Может ли солнце греть в космосе. Температура в космосе по Цельсию. Какая температура в открытом космосе? Что такое абсолютный нуль

В жаркие летние дни самое время поговорить о жаре и холоде космоса. Благодаря научно-фантастическим фильмам, научно и не очень научно-популярным передачам, у многих закрепилось убеждение, что космос - это невообразимо холодное место, в котором, самое главное: найти как согреться. Но на самом деле все гораздо сложнее.

Чтобы разобраться тепло или холодно в космосе, надо сначала вернуться к азам физики. Итак, что такое тепло? Понятие температуры применимо к молекулам вещества, которые находятся в постоянном движении. При получении дополнительной энергии, молекулы начинают двигаться активнее, а при потере энергии - медленнее.

Из этого факта следует три вывода:
1) у вакуума температуры нет;
2) в вакууме есть только один способ теплопередачи – излучение;
3) объект в космосе, фактически группу движущихся молекул, можно охладить, если обеспечить контакт с группой медленно движущихся молекул или нагреть, обеспечив контакт с быстро движущейся группой.

Первый принцип используется в термосе, где вакуумные стенки удерживают температуру горячего чая и кофе. Точно так же перевозят сжиженный природный газ в танкерах. Второй принцип определяет так называемые условия внешнего теплообмена, то есть взаимодействие Солнца (и/или других источников излучения) и космического аппарата. Третий принцип используется при проектировании внутренней конструкции космических аппаратов.

Когда говорят о температуре космоса, то могут подразумевать две разные температуры: температуру рассеянного в пространстве газа или температуру тела, находящегося в космосе. Как все знают, в космосе вакуум, но это не совсем так. Почти все пространство там, по крайней мере внутри галактик, наполнено газом, просто он настолько сильно разрежен, что не оказывает почти никакого теплового воздействия на помещенное в него тело.

В разреженном космическом газе молекулы встречаются крайне редко, и воздействие их на макро тела, такие как спутники или космонавты, незначительно. Такой газ может быть разогрет до экстремальных температур, но из-за редкости молекул, космические путешественники его не почувствуют. Т.е. для большинства обычных космических аппаратов и кораблей совсем не важно какая температура у межпланетной и межзвездной среды: хоть 3 Кельвина, хоть 10000 градусов Цельсия.

Важно другое: что из себя представляет наше космическое тело, какой оно температуры, и какие источники излучения есть поблизости.

Главный источник теплового излучения в нашей Солнечной системе - это Солнце. И Земля довольно близко к нему, поэтому, на околоземных орбитах очень важно настроить «взаимоотношения» космического аппарата и Солнца.

Чаще всего рукотворные объекты в космосе стараются укутать в многослойное одеяло, не дающее теплу спутника уходить в космос и не позволяющее лучам Солнца поджаривать нежные внутренности аппарата. Многослойное одеяло называется ЭВТИ - экранно-вакуумная теплоизоляция, «золотая фольга», которая на самом деле не золотая и не фольга, а покрытая специальным сплавом полимерная пленка, похожая на ту, в которую заворачивают цветы.

Впрочем, в некоторых случаях и у некоторых производителей, ЭВТИ не похожа на фольгу, но выполняет ту же изолирующую функцию.

Иногда некоторые поверхности спутника специально оставляют открытыми для того, чтобы они или поглощали солнечное излучение, или отводили в космос тепло изнутри. Обычно в первом случае поверхности покрывают черной эмалью, сильно поглощающей излучение Солнца, и плохо испускающей свое собственное, а во втором – белой эмалью, плохо поглощающей и хорошо изучающей.

Бывают случаи, когда на борту космического аппарата приборы должны работать при очень низкой температуре. Например, обсерватории «Миллиметрон» и JWST будут наблюдать тепловое излучение Вселенной и для этого и зеркалам их бортовых телескопов, и приёмникам излучения нужно быть очень холодными. На JWST главное зеркало планируется охлаждать до - 173 градусов Цельсия, а на «Миллиметроне» - ещё ниже, до - 269 градусов Цельсия. Для того, чтобы Солнце не нагревало космические обсерватории, они укрываются так называемым радиационным экраном: своеобразным многослойным солнечным зонтиком, похожим на ЭВТИ.

Кстати, как раз для таких «холодных» спутников важным становится небольшой нагрев от разреженного космического газа и даже от заполняющих всю Вселенную фотонов реликтового излучения. Отчасти поэтому, что «Миллиметрон», что JWST отправляют подальше от теплой Земли в точку Лагранжа, за 1,5 млн км. Кроме солнечных зонтиков на этих научных спутниках будет сложная система с радиаторами и многоступенчатыми холодильниками.

На других, менее сложных аппаратах сброс тепла в космосе тоже осуществляется через излучение с радиаторов. Обычно их как раз и покрывают белой эмалью и стараются разместить либо перпендикулярно солнечному свету, либо в тени. На метеоспутнике "Электро-Л" требовалось охладить матрицу инфракрасного сканера до -60 градусов Цельсия. Это было достигнуто при помощи радиатора, который постоянно держали в тени, а каждые полгода спутник разворачивали на 180 градусов, чтобы наклон земной оси не приводил к попаданию радиатора под солнечные лучи. В дни равноденствий спутник приходилось держать немного под углом, отчего на снимках появлялись артефакты у полюсов Земли.

Перегрев является одним из препятствий в создании космического аппарата с мощным ядерным источником энергии. Электричество на борту получается из теплоты с КПД гораздо меньше 100%, поэтому излишек тепла приходится сбрасывать в космос. Традиционные, используемые сейчас радиаторы были бы слишком большими и тяжелыми, поэтому сейчас в нашей стране проводятся работы по созданию капельных холодильников-излучателей, в которых теплоноситель в виде капелек пролетает через открытый космос и отдает ему тепло изучением.

Главный источник излучения в Солнечной системе – это Солнце, но планеты, их спутники, кометы и астероиды, вносят свой весомый вклад в тепловое состояние космического аппарата, который пролетает около них. Все эти небесные тела обладают своей температурой и являются источниками теплового излучения, которое, к тому же, взаимодействует со внешними поверхностями аппарата иначе, чем более «горячее» излучение Солнца. А ведь планеты еще и отражают солнечное излучение, причем планеты с плотной атмосферой отражают диффузно, безатмосферные небесные тела – по особому закону, а планеты с разреженной атмосферой типа Марса – ещё совершенно иначе.

При создании космических аппаратов требуется учитывать не только «взаимоотношения» аппарата и космоса, но и всех приборов и устройств внутри, а также и ориентацию спутников относительно источников излучения. Для того чтобы одни не нагревали других, а третьи не замерзали, и чтобы поддерживалась рабочая температура на борту, разрабатывается отдельная служебная система. Она называется «Система обеспечения теплового режима» или СОТР. В нее могут входить нагреватели и холодильники, радиаторы и тепловоды, датчики температуры и даже специальные компьютеры. Могут использоваться активные системы или пассивные, когда роль обогревателей выполняют работающие приборы, а радиатора - корпус аппарата. Именно такая простая и надежная система создана для частного российского спутника «Даурии Аэроспейс».

Более сложные активные системы задействуют циркулирующий теплоноситель или тепловые трубы, подобные тем, что часто используются для отвода тепла от центрального процессора к радиатору в компьютерах и ноутбуках.

Соблюдение теплового режима, зачастую, оказывается решающим фактором работоспособности аппарата. Например, чуткий к перепадам температуры «Луноход-2» погиб из-за какой-то смехотворной горсти черного реголита на своей крыше. Солнечное излучение, которое уже не отражалась теплоизоляцией, привело к перегреву оборудования и выходу из строя «лунного трактора».

В создании космических аппаратов и кораблей, соблюдением теплового режима занимаются отдельные инженерные специалисты по СОТР. Один из них - Александр Шаенко из «Даурии Аэроспейс», занимался спутником DX1, и он помог в создании данного материала. Сейчас Александр занялся чтением лекций о космонавтике и созданием собственного спутника, который послужит популяризации космоса, став самым ярким объектом в небе после Солнца и Луны.

Несмотря на все распространенные мифы, космос на самом деле не холодный и не горячий. Лишь материя может иметь эти свойства, а космос - это отсутствие материи. Наука утверждает, что тепло - это мера молекулярной активности. Поскольку в космосе очень мало атомов или молекул, он является практически идеальным вакуумом.

Астронавт Базз Олдрин (архив НАСА)

Только наличие или удаленность источников тепла определяют температуры кипения или замерзания и, соответственно, человеческие ощущения - холодно в данный момент или жарко. Именно от этого так важен вопрос терморегуляции и обитаемой капсулы космического корабля, и тем более скафандра. Ведь если судить по рапортам астронавтов и представленным ими кино- и фотоматериалам, в скафандрах им проходилось проводить часы (а то и по 10-12 часов) в открытом космосе (т. е. либо под испепеляющим Солнцем, либо в его ледовитой тени), и скафандр был для них и единственным укрытием, и едва ли не домом родным.

И вот когда и в 1969 году, и в последующие три года американские астронавты бодро запрыгали по лунной поверхности, все, конечно, обратили внимание на рюкзачки у них за спиной. Трудящиеся всей планеты с несомненным почтением взирали на этот шедевр передовой американской технологии. Ведь этот универсальный рюкзачок обеспечивал астронавту все жизненно необходимое. Поскольку космос «холодный», как все тогда считали, рюкзак должен был обеспечивать достаточный обогрев. А еще нормальное давление, подачу кислорода, удаление избытка влаги и т. д. Потом, правда, вспомнили, что Луна днем горячее кипятка (Солнце нагревает ее поверхность до 120°С), и астронавт скорее нуждается в системах охлаждения. Но это вызвало еще большее почтение к американским технологам: какие замечательные системы обеспечения они сделали - и от жары спасают, и от холода!

Снимок Луны (архив wordpress.com)

Коротко эта система и содержащий ее рюкзак названы ПСЖО - Портативная система жизнеобеспечения (PLSS - Portable Life Support System). Готовая к использованию ПСЖО весит 38 кг на Земле и чуть больше 6 кг на Луне, имеет 66 см в длину, 46 см в ширину и 25 см в толщину. Общий объем рюкзака, таким образом, составляет 0,66 х 0,46 х 0,25 = 0,076 куб. м. NASA утверждало, что ПСЖО предоставляла астронавту полное жизнеобеспечение на несколько часов. Там находились: баллон с кислородом, углекислотный нейтрализатор, аппарат для отвода влаги, емкость с водой для охлаждения, еще одна емкость с отработанной водой для выброса, теплообменник, система датчиков для контроля жизненных функций организма, мощная рация для передачи сигнала на Землю, 4 литра воды. И, в довершение всего, батареи достаточной емкости для питания всего оборудования в этом рюкзачке.

Остряки, правда, отмечают аналогию системы с дыхалом китов и кашалотов: те, возвращаясь из океанических пучин на поверхность, с мощным фонтаном должны выбрасывать отработанный воздух и пар. А астронавты - еще и прочие продукты жизнедеятельности. Т. е. по Луне они должны были разгуливать в ореоле либо фонтанов пара, либо мелкого ледяного крошева извергаемых из скафандров пота, мочи и прочих естественных выбросов организма. Ну ладно, допустим, что эти снимки НАСА не стало публиковать из этических соображений.

Но как это все делалось с технической точки зрения? НАСА утверждает, что астронавты носили комбинезоны, в которые были вшиты тонкие пластиковые трубки с водой, соединенные с водяным бачком: «Применялась более эффективная система охлаждения, использующая охлаждаемое водой белье, в которое были вшиты тонкие пластиковые трубки»

Базз Олдрин (архив НАСА)

Горячий воздух в скафандрах, создаваемый метаболическими процессами организма астронавта, по-видимому, отводился с помощью этой системы в теплообменник ПСЖО. Когда скафандр начинал накапливать излишнее тепло, астронавт нажимал кнопочку, приводя в действие механизм выброса отработанной воды из выпускного отверстия теплообменника. «Вода извергалась из скафандра, превращалась в лед и распылялась в пространстве», - свидетельствуют астронавты.

Единственное достоинство пластика - его гибкость. Во всем остальном пластик - это худший выбор для системы охлаждения, поскольку он является хорошим теплоизолятором. Система могла бы работать только при достаточном количестве воды в ПСЖО. А какое количество воды требуется, чтобы выполнить поставленную задачу? Площадь поверхности астронавта составляет приблизительно 0,75 кв. м. Используя коэффициент излучения 0,2, мы находим поглощаемое солнечное излучение: 1353 Вт / m² × 0.2 × 0,75 m² = 203 Вт.

Сторонники официальной версии НАСА утверждают: «ПСЖО была сконструирована так, чтобы отводить метаболическое тепло, выделяемое астронавтом, в ритме 1600 британских тепловых единиц (БТЕ) в час». Поскольку 1 БТЕ в час округленно равняется 0,293 Вт, мы получаем 469 Вт. Это надо приплюсовать к тепловому излучению Солнца: 203 + 469 = 672 Вт.

Теперь необходимо вычислить тепло, излучаемое теневой стороной скафандра. Но сначала нам придется сделать определенные допущения относительно температуры воздуха и скафандра. Чем выше температура, тем легче охладителю работать.

Предположим, что температура скафандров была +38°С, т. е. +311°К. Теперь мы можем применить формулу Стефана Больцмана. Для этого перевернем исходное уравнение:

Таким образом, округлив результат, мы получаем излучение в 80 Вт. Вычитаем его из 672 и получаем 592 Вт. Чтобы округлить, прибавим 8 Вт на различные тепловые излучения от раций, водяного насоса и т. д. Итого 600 Вт. В одном ватте - 860 калорий. Взяв в расчет крайний случай (работу с 100% эффективностью), необходимо производить достаточное количество льда, способное выдержать 516 000 кал в час. За 4 часа набегает 2 064 000 калорий.

Чтобы снизить температуру 1 г воды на 1°С, требуется потеря 1 калория тепла. Для формирования льда 1 г воды должен потерять еще 80 калорий. Таким образом, падение температуры с +38°С до точки замерзания (0°С) влечет за собой передачу 38 калорий, плюс еще 80 калорий для замерзания - итого 118 калорий на каждый грамм, выброшенный через выпускное отверстие. Если разделить 2 064 000 калорий на 118, то получается 17 491 г, которые надо выпустить. Это 17,5 л, или 0,0175 куб. м, т. е. почти четверть объема ПСЖО. Это количество воды весит на Земле 17,5 кг, что составляет 46% от веса рюкзака!

Давайте теперь посмотрим на вещи реально. Используя эффективность 40% (это - достаточно высокий показатель для большинства механизмов), мы получим гораздо более впечатляющие цифры, говорящие о том, что ПСЖО элементарно не вместила бы даже охлаждающий агрегат! Но в рюкзаке ведь еще находятся баллон с кислородом, углекислотный нейтрализатор, аппарат для отвода влаги, емкость с водой для охлаждения, емкость с отработанной водой, теплообменник, система датчиков, рация, мощные батареи! Вам не кажется, что сконструировать такие рюкзачки под силу лишь волшебнику?

Однако продолжим про охлаждение. Если мы разделим 17 491 г воды на 240 минут, получается, что в минуту из выпускного отверстия надо было извергать примерно 70 г воды, вылетающей из скафандра в виде «замороженного пара». Последнее выражение звучит примерно как «жареный лед», но специалисты из НАСА, похоже, привыкли к парадоксам.

Впрочем, все это не имеет значения, поскольку теоретические выкладки противоречат реальным фактам. Согласно официально опубликованной схеме ПСЖО в разрезе, на ней контейнер для воды имеет всего 7,6 см в диаметре и 35,5 см в длину. Соответственно, объем этого контейнера равен 1600 куб. см (1,6 л). Этой воды хватило бы лишь на 25-30 минут при невозможной 100% эффективности! Но ведь НАСА рассказывало нам про 4 часа! Может быть, изобретен новый способ концентрирования воды? Из всех достижений космической эры это было бы самым потрясающим!

Деталь снимка с изображением скафандра Майкла Коллинза (архив НАСА)

Если смотреть на вещи реально, то наши космические герои должны были носить с собой зонтик от солнца. Защита от прямого солнечного света избавила бы их от многих проблем с перегревом, по крайней мере, пока они скакали по Луне.

Но даже если бы они, прыгая, прикрывались неким зонтиком, то почему ничем не были прикрыты лунные модули? Они часами стояли под палящим Солнцем. Представьте-ка себе ваш автомобиль, простоявший прошлым летом несколько часов на солнцепеке! Наверное, долго не сможете забыть ощущений при посадке в него, правда же? Но астронавты почему-то вдруг заявляют, что в лунных модулях их ждала леденящая холодрыга.

Базз Олдрин писал, что в ЛЭМе было так холодно, что ему пришлось убавить кондиционер в скафандре. С другой стороны, Коллинз вещал: «Отведенные им 2,5 часа пролетели очень быстро, после чего они вскарабкались обратно в лунный модуль, закрыли дверь и закачали воздух в салон». Это очень странно, поскольку кондиционер скафандра (если он вообще существовал!) не мог работать в условиях нормального давления внутри ЛЭМа. Он был способен функционировать только в вакууме! Закрадываются сомнения: эти два астронавта летали на одну и ту же Луну?..

1 апреля 2014 в 06:33

Факты о космосе, в которые трудно поверить

  • Фототехника ,
  • Космонавтика ,
  • Физика

1 апреля принято всех обманывать или подшучивать, но я пойду против традиции. Даже в этот день я не могу позволить себе обман читателей. Поэтому расскажу о реальных фактах, которые вызвали мое удивление. Разумеется, для кого-то эти факты не станут новостью, но, надеюсь, хоть что-то сможет заинтересовать каждого. И еще надеюсь, что многие, подобно мне, и вопреки заветам Шерлока Холмса, тащат в свой мозговой чердак не только нужное, но и просто интересное. Буду рад, если эта первоапрельская подборка заставит кого-нибудь забраться поглубже в источники и перепроверить мои заявления.

Температура в космосе, на орбите Земли равна +4°С


Если быть точным, то не на орбите Земли, а на расстоянии от Солнца равному удаленности орбиты Земли. И для абсолютно черного тела, т.е. такого, которое полностью поглотит солнечные лучи, ничего не отразив обратно.

Считается, что температура в космосе стремится к абсолютному нулю. Во-первых, это не совсем так, поскольку вся известная Вселенная нагрета до 3 К, реликтовым излучением. Во-вторых, вблизи от звезд температура повышается. А мы обитаем довольно близко к Солнцу. Сильная теплозащита нужна скафандрам и космическим кораблям потому, что они входят в тень Земли, и наше светило уже не может их согревать до указанного +4°С. В тени температура может опускаться до -160° С, например ночью на Луне. Это холодно, но до абсолютного нуля еще далеко.

Вот, для примера, показания бортового термометра спутника TechEdSat , который вращался на низкой околоземной орбите:

На него оказывала влияние еще и земная атмосфера, но в целом график демонстрирует не те ужасные условия, которые принято представлять в космосе.

На Венере местами идет свинцовый снег

Это, наверно, самый поразительный факт о космосе, который я узнал не так давно. Условия на Венере настолько отличаются от всего, что мы могли бы вообразить, что венериане спокойно могли бы летать в земной ад, чтобы отдохнуть в мягком климате и комфортных условиях. Поэтому, как бы ни казалась фантастической фраза “свинцовый снег”, для Венеры - это реальность.

Благодаря радару американского зонда Magellan вначале 90-х, ученые обнаружили на вершинах венерианских гор некое покрытие, обладающее высокой отражающей способностью в радиодиапазоне. Поначалу предполагалось несколько версий: последствие эрозии, отложение железосодержащих материалов и т.п. Позже, после нескольких экспериментов на Земле, пришли к выводу , что это самый натуральный металлический снег, состоящий из сульфидов висмута и свинца. В газообразном состоянии они выбрасываются в атмосферу планеты во время извержений вулканов. Затем термодинамические условия на высоте 2600 м способствуют конденсации соединений и выпадению на возвышенностях.

В Солнечной системе 13 планет… или больше

Когда Плутон разжаловали из планет, правилом хорошего тона стало знание, что в Солнечной системе всего восемь планет. Правда, при этом же, ввели новую категорию небесных тел - карликовые планеты. Это “недопланеты”, которые имеют округлую (или близкую к ней) форму, не являются ничьими спутниками, но, при этом не могут очистить собственную орбиту от менее массивных конкурентов. Сегодня считается, что таких планет пять: Церера, Плутон, Ханумеа, Эрида и Макемаке. Ближайшая к нам - Церера. Через год мы узнаем о ней намного больше чем сейчас, благодаря зонду Dawn. Пока знаем только, что она покрыта льдом и с двух точек на поверхности у нее испаряется вода со скоростью 6 литров в секунду. О Плутоне тоже узнаем в следующем году, благодаря станции New Horizons. Вообще, как 2014 год в космонавтике станет годом комет, 2015 год обещает стать годом карликовых планет.

Остальные карликовые планеты находятся за Плутоном, и какие-либо подробности о них мы узнаем не скоро. Буквально на днях нашли еще одного кандидата, правда официально его в список карликовых планет не включили, так же как и его соседку Седну. Но не исключено, что найдут еще, несколько более крупных карликов, поэтому число планет в Солнечной системе еще вырастет.

Телескоп Hubble - не самый мощный

Благодаря колоссальному объему снимков и впечатляющим открытиям, совершенным телескопом Hubble, у многих существует представление, что этот телескоп обладает самым высоким разрешением и способен увидеть такие детали, которые не увидеть с Земли. Какое-то время так и было: несмотря на то, что на Земле можно собрать большие зеркала на телескопах, существенное искажение в изображения вносит атмосфера. Поэтому даже “скромное” по земным меркам зеркало диаметром 2,4 метра в космосе, позволяет добиться впечатляющих результатов.

Однако, за годы, прошедшие с момента запуска Hubble и земная астрономия не стояла на месте, было отработано несколько технологий, позволяющих, если не полностью избавиться от искажающего действия воздуха, то существенно снизить его воздействие. Сегодня самое впечатляющее разрешение способен дать Very Large Telescope Европейской Южной обсерватории в Чили. В режиме оптического интерферометра, когда вместе работают четыре основных и четыре вспомогательных телескопа, возможно достичь разрешающей способности превышающей возможности Hubble примерно в пятьдесят раз.

К примеру, если Hubble дает разрешение на Луне около 100 метров на пиксель (привет всем, кто думает, что так можно рассмотреть посадочные аппараты Apollo), то VLT может различить детали до 2 метров. Т.е. в его разрешении американские спускаемые аппараты или наши луноходы выглядели бы как 1-2 пикселя (но смотреть не будут из-за чрезвычайно высокой стоимости рабочего времени).

Пара телескопов обсерватории Keck, в режиме интерферометра, способны превысить разрешение Hubble в десять раз. Даже по отдельности, каждый из десятиметровых телескопов Keck, используя технологию адаптивной оптики, способны превзойти Hubble примено в два раза. Для примера фото Урана:

Впрочем Hubble без работы не остается, небо большое, а широта охвата камеры космического телескопа превышает наземные возможности. А для наглядности можно посмотреть сложноватый, но информативный

Какая температура в космосе за пределами земной атмосферы? А в межзвездном пространстве? А если мы выйдем за пределы нашей галактики, будет ли там холоднее, чем внутри Солнечной системы? И можно ли вообще говорить о температуре применительно к вакууму? Попробуем разобраться.

Что такое тепло

Для начала необходимо понять, чем же в принципе является температура, как образуется тепло и отчего возникает холод. Чтобы ответить на эти вопросы, необходимо рассмотреть строение материи на микроуровне. Все вещества во Вселенной состоят из элементарных частиц - электронов, протонов, фотонов и так далее. Из их сочетания образуются атомы и молекулы.

Микрочастицы не являются неподвижными объектами. Атомы и молекулы постоянно колеблются. А элементарные частицы и вовсе перемещаются со скоростями, близкими к световым. Какая тут связь с температурой? Прямая: энергия движения микрочастиц - это и есть тепло. Чем сильнее колеблются молекулы в куске металла, например, тем горячее он будет.

Что такое холод

Но если тепло - это энергия движения микрочастиц, то какой будет температура в космосе, в вакууме? Конечно, межзвездное пространство не совсем пустое - сквозь него движутся фотоны, несущие свет. Но плотность материи там намного ниже, чем на Земле.

Чем меньше атомы сталкиваются друг с другом, тем слабее греется вещество, которое из них состоит. Если находящийся под большим давлением газ выпустить в разреженное пространство, его температура резко понизится. На этом принципе основана работа всем известного компрессорного холодильника. Таким образом, температура в открытом космосе, где частицы находятся очень далеко друг от друга и не имеют возможности сталкиваться, должна стремиться к абсолютному нулю. Но так ли это на практике?

Как происходит передача тепла

Когда вещество нагревается, его атомы испускают фотоны. Это явление тоже хорошо всем знакомо - накалившийся металлический волосок в электрической лампочке начинает ярко светиться. При этом фотоны переносят тепло. Таким образом энергия переходит от горячего вещества к холодному.

Космическое пространство не только пронизано фотонами, которые испускают бесчисленные звезды и галактики. Вселенная заполнена также так называемым реликтовым излучением, которое образовалось на ранних этапах ее существования. Именно благодаря этому явлению температура в космосе не может опуститься до абсолютного нуля. Даже вдали от звезд и галактик материя будет получать рассеянное по Вселенной тепло от реликтового излучения.

Что такое абсолютный нуль

Никакое вещество нельзя охладить ниже определенной температуры. Ведь остывание - это потеря энергии. В соответствии с законами термодинамики в определенной точке энтропия системы достигнет нуля. В этом состоянии вещество уже не сможет терять энергию. Это и будет предельно возможная низкая температура.

Наиболее яркой иллюстрацией этого явления может служить климат Венеры. Температура на ее поверхности достигает 477 °C. Благодаря атмосфере Венера жарче, чем Меркурий, который находится ближе к Солнцу.

Средняя температура поверхности Меркурия 349,9 °C днем и минус 170,2 °C ночью.

Марс может нагреваться до 35 градусов Цельсия летом на экваторе и охлаждаться до -143 °C зимой в районе полярных шапок.

На Юпитере температура достигает -153 °C.

Но холоднее всего на Плутоне. Температура его поверхности - минус 240 °C. Это лишь на 33 градуса выше абсолютного нуля.

Самое холодное место в космосе

Выше было сказано, что межзвездное пространство прогревается реликтовым излучением, а потому температура в космосе по Цельсию не опускается ниже минус 270 градусов. Но оказывается, могут существовать и более холодные участки.

В 1998 году телескоп Хаббл обнаружил газо-пылевое облако, которое стремительно расширяется. Туманность, названная Бумерангом, образовалась вследствие явления, известного как звездный ветер. Это очень интересный процесс. Суть его состоит в том, что из центральной звезды с огромной скоростью "выдувается" поток материи, которая попадая в разреженное космическое пространство охлаждается вследствие резкого расширения.

По оценкам ученых, температура в туманности Бумеранг составляет всего один градус по шкале Кельвина, или минус 272 °C. Это самая низкая температура в космосе, которую на данный момент удалось зафиксировать астрономам. Туманность Бумеранг находится на расстоянии 5 тысяч световых лет от Земли. Наблюдать ее можно в созвездии Центавра.

Самая низкая температура на Земле

Итак, мы выяснили, какая температура в космосе и какое место самое холодное. Теперь остается узнать, какие самые низкие температуры были получены на Земле. А произошло это в ходе недавних научных экспериментов.

В 2000 году исследователи из Технологического университета в Хельсинки охладили кусок металла родия почти до абсолютного нуля. В ходе эксперимента была получена температура равная 1*10 -10 Кельвина. Это всего на 0,000 000 000 1 градуса выше нижнего предела.

Целью исследований было не только получение сверхнизких температур. Основная задача заключалась в изучении магнетизма ядер атомов родия. Это исследование было весьма успешным и принесло ряд интересных результатов. Эксперимент помог понять, как магнетизм влияет на сверхпроводящие электроны.

Достижение рекордно низких температур состоит из нескольких последовательных этапов охлаждения. Вначале с помощью криостата металл охлаждается до температуры 3*10 -3 Кельвина. На следующих двух этапах используется метод адиабатического ядерного размагничивания. Родий охлаждается до температуры сначала 5*10 -5 Кельвина, а затем достигает рекордно низкой температуры.

Вопрос, поставленный в заголовке, в принципе является некорректным, ведь космос представляет собой пустоту, то есть пространство, где нет ничего. А температуру «ничего» измерить невозможно. Температура — следствие движения (активности) молекул, из которых состоят все материальные объекты. А нет материи – нет и температуры.

Теоретически ноль, а практически…

Космос лишь теоретически является вакуумом, ведь Вселенная согласно общепринятой научной (космологической) модели возникла в результате Большого взрыва, что обусловило реликтовое (космическое электромагнитное) излучение. Его спектр отвечает абсолютно черному телу, имеющему температуру по Кельвину – 2,725 (по Фаренгейту — минус 454,8°, по Цельсию – минус 270,425°).

Электромагнитное излучение в космосе – это дождь фотонов (безмассовых элементарных частиц), присутствующих в терагерцевом, инфракрасном, ультрафиолетовом, рентгеновском и гамма-излучении, а также в радиоволнах.

В наибольшей степени свойствами абсолютно черного тела обладает Солнце, его наружные слои имеют температуру около 6200 К, то есть температура в космосе может разниться.

Определенная роль в «температурном режиме» космоса принадлежит также планетам и их спутникам, астероидам, метеоритам и кометам, космической пыли и молекулам газов. Поэтому во Вселенной могут быть температурные отклонения. К примеру, в туманности Бумеранг (созвездие Центавра) благодаря «Хаббл» — автоматической обсерватории на орбите Земли была зафиксирована самая низкая космическая температура – 1 К (минус 272 градуса по шкале Цельсия). Ее причиной является «звездный ветер» (поток материи), идущий от центральной звезды.

О наличии космической пыли свидетельствует ночное свечение, обнаруженное астрономами в плоскости зодиакальных созвездий. Свечение, как установили ученые, — это свет, отражаемый от частиц космической пыли.

Материальными являются и космические лучи. В основном их структура состоит из стремительных ядер водородных и гелиевых атомов, а также более тяжелых ядер, к примеру, железа и никеля.

Таким образом, сколько градусов в космосе? Теоретически — 0° по шкале Кельвина или минус 273,15°С. На самом же деле, учитывая реликтовое излучение — 2,725 К (минус 270,425°С). Но это, если не брать во внимание тепло, излучаемое звездами и планетами.

Холодно — жарко

Отвечая на вопрос: «Какая температура в космосе», нужно отметить, что на все тела, находящиеся в космосе, действует не только смертельный для человека холод, но и губительная жара. Простейший пример тому – космический корабль. На его солнечной стороне – жарко, на теневой – холодно. И чем ближе или дальше звездолет от небесного светила, тем больше разница температур.

Положение Солнца влияет и на климат Земли. Одна теория гласит, что вращаясь вокруг Солнца, планета то приближается, то удаляется от него, поэтому происходит и смена времен года: зиму сменяет лето и наоборот. Однако на экваторе никогда не бывает зимы.

Дело в том, что земля вращается в наклонном положении относительно Солнца (23°27") и по-разному разворачивается к нему: то северным, то южным полушарием. Соответственно, лучи Солнца падают отвесно или под углом — в зависимости от этого земная поверхность нагревается больше или меньше.